본문 바로가기
  • 책상 밖 세상을 경험할 수 있는 Playground를 제공하고, 수동적 학습에서 창조의 삶으로의 전환을 위한 새로운 라이프 스타일을 제시합니다.

분류 전체보기90

[2024-1] 백승우 - (DeepSORT) SIMPLE ONLINE AND REALTIME TRACKING WITH A DEEP ASSOCIATION METRIC Simple Online and Realtime Tracking with a Deep Association MetricSimple Online and Realtime Tracking (SORT) is a pragmatic approach to multiple object tracking with a focus on simple, effective algorithms. In this paper, we integrate appearance information to improve the performance of SORT. Due to this extension we arearxiv.org0. AbstractSORT은 간단하고 효과적인 알고리즘에 중점을 둔 MOT(Multi object tracking)에 .. 2024. 5. 7.
[2024-1] 염제원 - Siamese Neural Networks for One-Shot Image Recognition https://www.cs.cmu.edu/~rsalakhu/papers/oneshot1.pdf 1-1. Upsides of this approachCapable of learning generic image features useful for making predictions about unknown class distributions even when very few examples are  available.Easily trained using standard optimization techniques on pairs sampled  from the source data.Provide a competitive approach that does not rely upon domain-specific  k.. 2024. 5. 6.
[2024-1] 김경훈 - PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Link : https://arxiv.org/abs/1612.00593 PointNet: Deep Learning on Point Sets for 3D Classification and SegmentationPoint cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In tarxiv.org 0. 개요Point cloud.. 2024. 4. 30.
[2024-1] 홍연선 - A Brief Introduction into Machine Learning https://www.semanticscholar.org/paper/A-Brief-Introduction-into-Machine-Learning R%C3%A4tsch/fab926b5da15870777607679ebd56985735023d0 https://www.semanticscholar.org/paper/A-Brief-Introduction-into-Machine-Learning-R%C3%A4tsch/fab926b5da15870777607679ebd56985735023d0 www.semanticscholar.org 1. Introduction 저자가 머신러닝의 "learning"을 귀납적 추론(inductive inference) 에 의한 것이라고 말한 것이 인상적이다. 머신러닝이 여러 데이터들을 학습.. 2024. 4. 14.