본문 바로가기
  • 책상 밖 세상을 경험할 수 있는 Playground를 제공하고, 수동적 학습에서 창조의 삶으로의 전환을 위한 새로운 라이프 스타일을 제시합니다.

Natural Language Processing21

[2024-2] 백승우 - Retrieval-Augmented Generation for Large Language Models: A Survey Retrieval-Augmented Generation for Large Language Models: A SurveyLarge Language Models (LLMs) showcase impressive capabilities but encounter challenges like hallucination, outdated knowledge, and non-transparent, untraceable reasoning processes. Retrieval-Augmented Generation (RAG) has emerged as a promising solution byarxiv.org0. AbstractLLM(Large Language Model)은 뛰어난 성과를 보이지만, hallucination, .. 2024. 11. 11.
[2024-2] 백승우 - (RAG) Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks Retrieval-Augmented Generation for Knowledge-Intensive NLP TasksLarge pre-trained language models have been shown to store factual knowledge in their parameters, and achieve state-of-the-art results when fine-tuned on downstream NLP tasks. However, their ability to access and precisely manipulate knowledge is still limarxiv.org0. AbstractPretrained LLM은 사실의 지식을 매개변수에 저장하고, downstream NLP 작업에서 미.. 2024. 11. 3.
[2024-1] 현시은 - CodeS: Towards Building Open-source Language Models for Text-to-SQL 원본 논문 링크 : https://arxiv.org/abs/2402.16347 CodeS: Towards Building Open-source Language Models for Text-to-SQLLanguage models have shown promising performance on the task of translating natural language questions into SQL queries (Text-to-SQL). However, most of the state-of-the-art (SOTA) approaches rely on powerful yet closed-source large language models (LLMs),arxiv.org Abstract언어 모델은 자연어 질문을.. 2024. 5. 28.
[2024-1] 현시은 - AIOS: LLM Agent Operating System 원본 논문 링크 : https://arxiv.org/abs/2403.16971 Abstract LLM 기반 agent의 통합 및 배포는 효율성 측면에서 많은 문제가 있다.예를 들어, LLM agent의 스케줄링, 리소스 할당, 스케줄링으로 인한 context 유지 및 전환, multi-agent 상황에서의 효율성 저하 등이 있다.Agent가 많아지고 복잡해지면 이런 문제는 큰 bottleneck이 되고, 리소스 활용을 최적화하기도 어렵다.위 문제를 해결하기 위해 본 논문은 LLM agent들을  OS의 개념을 활용하여 관리하는 새로운 OS 아키텍처인 AIOS를 제시한다.AIOS는 리소스 할당 최적화, Agent 간 context switching, Agent 동시 실행 지원, Agent Toolkit 제.. 2024. 5. 17.