본문 바로가기
  • 책상 밖 세상을 경험할 수 있는 Playground를 제공하고, 수동적 학습에서 창조의 삶으로의 전환을 위한 새로운 라이프 스타일을 제시합니다.

Computer Vision57

[2024-2] 김경훈 - VoxelMorph : A Learning Framework for Deformable Medical Image Registration Link : https://arxiv.org/abs/1809.05231 VoxelMorph: A Learning Framework for Deformable Medical Image RegistrationWe present VoxelMorph, a fast learning-based framework for deformable, pairwise medical image registration. Traditional registration methods optimize an objective function for each pair of images, which can be time-consuming for large datasets or rich defoarxiv.org      0. Abstract 기.. 2024. 9. 10.
[2024-2] 김경훈 - UNet++ : A Nested U-Net Architecture for Medical Image Segmentation Link : https://arxiv.org/abs/1807.10165 UNet++: A Nested U-Net Architecture for Medical Image SegmentationIn this paper, we present UNet++, a new, more powerful architecture for medical image segmentation. Our architecture is essentially a deeply-supervised encoder-decoder network where the encoder and decoder sub-networks are connected through a series of nesarxiv.org     이번 포스팅은 객체를 인식하는 방법 중 .. 2024. 9. 5.
[2024-1] 홍연선 - ImageNet Classification with Deep Convolutional Neural Networks 1. Introduction더 많은 이미지 데이터를 학습하기 위해서는 그만큼의 더 큰 학습량을 가진 모델이 필요하다. 하지만 객체 인식 작업의 복잡성 때문에 그 대용량 데이터셋으로도 잘 인식해내기에 부족할 수 있으므로, 모델은 부족한 데이터를 보완할 수 있는 사전지식을 더 많이 가져야한다고 말한다.  합성곱신경망(convolutional neural networks; CNNs)이 그러한 모델중에 하나이다.CNN은 이러한 모델 클래스 중 하나로, 이들의 용량은 깊이와 너비를 조절하여 관리할 수 있다. 또한 CNN은 이미지의 특성에 대해 강력하고 대체로 정확한 가정을 하며, 따라서 유사한 크기의 층을 가진 표준 피드포워드 신경망보다 훨씬 적은 연결과 파라미터를 가지고 있어 훈련하기가 더 쉽다.※ Feedfo.. 2024. 6. 29.
[2024-1] 한영웅 - DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation, CVPR 2023, Google Research, Boston University Abstract대규모 텍스트-이미지 모델은 주어진 참조 세트(reference set)에서 객체의 모양을 모방하고 다양한 맥락에서 새로운 표현을 합성하는 능력이 부족. 이에 저자들은 텍스트-이미지의 "개인화"(“personalization”)를 위한 새로운 접근 방식을 제시. 객체에 대한 몇 개의 이미지만 입력으로 주어지면 사전 훈련된 텍스트-이미지 디퓨젼 모델(DM)을 파인튜닝하여 해당 특정 객체와 고유 식별자를 바인딩하는 방법을 학습. 고유 식별자를 사용하여 다양한 장면에서 그 객체의 새로운 실제 같은 이미지를 합성할 수 있음. 새로운 자동 클래스별 사전 보존 손실 (autogenous class-specific prior preservation loss)과 새로운 데이터 세트 및 평가 프로토콜 (e.. 2024. 5. 29.