Computer Vision134 [2025-1] 전연주 - Patches Are All You Need? 논문 링크: 2201.09792 Overview:Transformer 기반 Vision 모델의 성능이 patch 기반 입력 표현 때문인지, self-attention 구조 때문인지 탐구하고, 단순한 convolution 기반 모델 ConvMixer를 제안함.1. Introduction기존 Vision 분야에서 CNN이 오랫동안 표준 모델이었음.하지만 Transformer 기반 모델(특히 ViT)이 등장하며, 대규모 데이터셋에서 CNN보다 우수한 성능을 보이기 시작함.Transformer는 원래 NLP에 특화되었고, self-attention의 계산 복잡도는 입력의 길이에 대해 제곱 (O(N²))이기 때문에, 이미지의 각 픽셀에 직접 적용하기에는 매우 비효율적임.→ 이를 해결하기 위해 등장한 아이디어가 바.. 2025. 5. 15. [2025-1] 주서영 - Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learning Expert-level detection of pathologies from unannotated chest X-ray images via self-supervised learningGitHub GitHub - rajpurkarlab/CheXzero: This repository contains code to train a self-supervised learning model on chest X-ray images thThis repository contains code to train a self-supervised learning model on chest X-ray images that lack explicit annotations and evaluate this model's performanc.. 2025. 5. 15. [2025-1] 전윤경-A FOUNDATION MODEL FOR GENERALIZABLE DISEASEDIAGNOSIS IN CHEST X-RAY IMAGES CXRBase: 흉부 X선 이미지(CXR)에 대한 질병 진단의 일반화된 해결책을 제공이미지 기반 자기 지도 학습(SSL) 방법: 데이터를 masking하여 그 마스킹된 부분을 재구성하는 방식으로 학습하는 모델Masked Autoencoders (MAE): ViT와 결합 모델 아키텍처데이터 처리배경을 제외한 이미지의 흉부영역만 유지512*512 해상도( 큐빅 보간법)데이터 증강 기법: random cropping, random horizontal flipping 적용stage 1 (자가 지도 학습(SSL))인코더: ViT-large(24개 트랜스포머 블록)마스크 비율: 0.75멀티헤드 자기 주의(Multihead Self-Attention)와 Multi-layer Perceptron 계층을 포함하여 특성 .. 2025. 5. 9. [2025-1] 박지원-Encoder-Decoder with Atrous SeparableConvolution for Semantic Image Segmentation 1. Introduction : Semantic Segmentation의 발전과 DeepLabv3+의 등장방법론장점단점Spatial Pyramid Pooling다양한 스케일의 문맥 정보 인코딩객체 경계 세부 정보 부족Encoder-Decoder날카로운 객체 경계 포착다양한 스케일 정보 인코딩 부족 Semantic Segmentation이란 이미지의 모든 픽셀에 의미론적 레이블을 할당하는 방법론으로, FCN(Fully Convolutional Network)모델이 현저한 성능 향상을 보인 바 있다. 이 FCNs은 spatial pyramid pooling(다양한 비율과 유효 수용 영역을 가진 필터나 풀링 연산을 통해 들어오는 특징을 조사하여 멀티 스케일 문맥 정보를 인코딩하는 방식)과 encoder-de.. 2025. 5. 8. 이전 1 2 3 4 5 6 7 8 ··· 34 다음