본문 바로가기
  • 책상 밖 세상을 경험할 수 있는 Playground를 제공하고, 수동적 학습에서 창조의 삶으로의 전환을 위한 새로운 라이프 스타일을 제시합니다.

분류 전체보기148

[2023-2] 김경훈 - High-Resolution Image Synthesis with Latent Diffusion Models 원본 논문 링크 : https://arxiv.org/abs/2112.10752 High-Resolution Image Synthesis with Latent Diffusion Models By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image data and beyond. Additionally, their formulation allows for a guiding mechanism t arxiv.org 0. Abstract 이미지 형성 과정을 순차적.. 2023. 11. 25.
[2023-2] 염제원 - Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks We propose an algorithm for meta-learning that is model-agnostic, in the sense that it is compatible with any model trained with gradient descent and applicable to a variety of different learning problems, including classification, regression, and reinforc arxiv.org Abstract Model-Agnostic한 Meta-Learning 알고리즘 (MAML)을 제시함 Gradient .. 2023. 11. 24.
[2023-2] 백승우 - RUBi: Reducing Unimodal Biases for Visual Question Answering RUBi: Reducing Unimodal Biases in Visual Question Answering Visual Question Answering (VQA) is the task of answering questions about an image. Some VQA models often exploit unimodal biases to provide the correct answer without using the image information. As a result, they suffer from a huge drop in performance whe arxiv.org 0. Abstract 일부 VQA 모델은 image 정보를 사용하지 않고, 정답을 도출하기 위해 unimodal bias를 이용.. 2023. 11. 20.
[2023-2] 백승우 - Show and Tell: A Neural Image Caption Generator Show and Tell: A Neural Image Caption Generator Automatically describing the content of an image is a fundamental problem in artificial intelligence that connects computer vision and natural language processing. In this paper, we present a generative model based on a deep recurrent architecture that com arxiv.org Abstract CV와 기계번역을 결합하여, 심층 반복 아키텍처에 기반한 생성 모델 훈련 이미지가 주어졌을 때 목표 설명 문장의 가능성을 최대화하도록.. 2023. 11. 5.