전체 글271 [2025-1] 최민서 - Denoising Diffusion Implicit Models [DDIM] https://arxiv.org/abs/2010.02502 Denoising Diffusion Implicit ModelsDenoising diffusion probabilistic models (DDPMs) have achieved high quality image generation without adversarial training, yet they require simulating a Markov chain for many steps to produce a sample. To accelerate sampling, we present denoising diffusionarxiv.org 본 논문은 Denoising Diffusion Probabilistic Models(DDPM)와 깊은 .. 2025. 2. 21. [2025-1] 주서영 - Flow matching for generative modeling Flow MatchingICLR 2023850회 인용1. Introduction본 논문은 Continuous Normalizaing Flows(CNF)를 시뮬레이션 없이(simulation-free) 효율적으로 훈련할 수 있는 학습 방법인 Flow Matching (FM)을 제시한다.2. Preliminaries : Continuous Normalizing FlowsNormalizaing Flow : 데이터 분포인 $x$에서 $z$로의 역변환이 가능한 Flow를 학습하는 모델Continuous Normalizing Flows(CNF) : 시간에 따른 vector filed를 학습하여 ODE를 통해 확률 분포를 변환하는 생성 모델$\mathbb{R}^d$데이터 포인트 $x=(x^1,\cdots,x^d)\i.. 2025. 2. 20. [25-1] 박지원 - Deep-Emotion: Facial Expression RecognitionUsing Attentional Convolutional Network Original paper ) https://arxiv.org/abs/1902.01019 Deep-Emotion: Facial Expression Recognition Using Attentional Convolutional NetworkFacial expression recognition has been an active research area over the past few decades, and it is still challenging due to the high intra-class variation. Traditional approaches for this problem rely on hand-crafted features such as SIFT, HOG and LBP, foarxiv.or.. 2025. 2. 19. [2025-1] 김학선 - Code Security Vulnerability Repair Using Reinforcement Learning with Large Language Models https://arxiv.org/abs/2401.07031 Code Security Vulnerability Repair Using Reinforcement Learning with Large Language ModelsWith the recent advancement of Large Language Models (LLMs), generating functionally correct code has become less complicated for a wide array of developers. While using LLMs has sped up the functional development process, it poses a heavy risk to code secarxiv.orgIntroducti.. 2025. 2. 18. 이전 1 ··· 14 15 16 17 18 19 20 ··· 68 다음