CNN1 [2024-1] 홍연선 - ImageNet Classification with Deep Convolutional Neural Networks 1. Introduction더 많은 이미지 데이터를 학습하기 위해서는 그만큼의 더 큰 학습량을 가진 모델이 필요하다. 하지만 객체 인식 작업의 복잡성 때문에 그 대용량 데이터셋으로도 잘 인식해내기에 부족할 수 있으므로, 모델은 부족한 데이터를 보완할 수 있는 사전지식을 더 많이 가져야한다고 말한다. 합성곱신경망(convolutional neural networks; CNNs)이 그러한 모델중에 하나이다.CNN은 이러한 모델 클래스 중 하나로, 이들의 용량은 깊이와 너비를 조절하여 관리할 수 있다. 또한 CNN은 이미지의 특성에 대해 강력하고 대체로 정확한 가정을 하며, 따라서 유사한 크기의 층을 가진 표준 피드포워드 신경망보다 훨씬 적은 연결과 파라미터를 가지고 있어 훈련하기가 더 쉽다.※ Feedfo.. 2024. 6. 29. 이전 1 다음